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Elucidating spin correlations in the parent compounds of high-temperature superconductors is cru-
cial for understanding superconductivity. We used neutron scattering to study spin correlations in
Li1−xFexODFeSe, an insulating material with reduced electron carriers compared to its superconducting
counterpart (Tc ¼ 41 K), serving as the undoped parent compound. Our findings show a reduced total
fluctuating moment in this insulator relative to FeSe and 122 iron pnictides, likely due to increased
interlayer distances from intercalation, which enhance fluctuations and reduce the intensity of spin
excitations. Moreover, we observed a V-shaped spin wavelike excitation dispersion, contrasting with the
twisted hourglass pattern in the superconducting counterpart. Electron doping shifts spin excitation from
ðπ; 0Þ point to an incommensurate position towards ðπ; πÞ direction below 65 meV. This transition from
V-shaped to hourglasslike dispersion, akin to behaviors in hole-doped cuprates, suggests a potential shared
mechanism in magnetism and superconductivity across these diverse systems.
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Iron-based superconductivity emerges when sufficient
carriers are introduced to an antiferromagnetic semimetallic
parent compound through chemical doping [1]. Under-
standing the inherent spin fluctuations in the parent com-
pounds, as well as how they evolve with carrier doping, is
essential to unravel the mysterious pairing mechanism, as
spin fluctuations may play a key role in mediating Cooper
pairing [2,3]. Earlier measurements have revealed that
carrier doping in iron pnictides leads to a broadening of
the parent compound’s spin wave excitation spectrum and
induces a resonance mode below the superconducting gap
[2]. These spin excitations are believed to be the driving
forces behind an s-wave pairing, characterized by a sign-
reversal between electron and hole pockets in the super-
conducting gap function [2,3].
Electron-doped iron selenide superconductors have

recently attracted substantial attention due to their unique
electronic structure and notably high critical temperature
(Tc) [4–7]. The Fermi surface topology of these super-
conductors diverges from that found in iron pnictides,
containing only electron pockets at the corners of the
Brillouin zone, and devoid of hole pockets at the zone
center [8–18]. This is incompatible with the proposed sign-
reversed s-wave Cooper pairing mechanism associated

with the scattering between electron and hole pockets in
iron pnictides. More interestingly, recent inelastic neutron
scattering measurements have revealed that the spin fluc-
tuations in electron-doped iron selenide superconductor
Li1−xFexODFeSe present a twisted dispersion [19], a
dramatic deviation from the conventional spin wavelike
dispersion typically observed in iron pnictides [2,20]. This
raises intriguing questions about the magnetic state from
which these excitations originate, and the potential impact
of electron doping on spin excitations.
In contrast to the typical method of achieving super-

conductivity in iron pnictides through chemical sub-
stitution into non-superconducting parent compounds,
Li1−xFexODFeSe achieves superconductivity through a
distinct mechanism involving the intercalation of
Li1−xFexOD between FeSe layers [6,7]. This intercalation
process not only introduces carrier doping but also enhan-
ces the two-dimensional nature of the system. Both of these
effects are crucial factors that could potentially play a
pivotal role in enhancing superconductivity, as a record
high critical temperature of around 65 K has been observed
in monolayer FeSe thin films [5,12,13,21].
The as-grown Li1−xFexODFeSe compound typically

exhibits superconductivity with a critical temperature
(Tc) of 41 K. Initially, ion gating was used to gradually
modify the Tc of Li1−xFexODFeSe, ultimately leading to
the emergence of an insulating state as Tc diminished [22].
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However, ion-gated materials posed challenges for neutron
scattering measurements, limiting our ability to explore the
evolution of spin fluctuations. Recently, a significant
breakthrough has been achieved by researchers who man-
aged to induce the insulating state in Li1−xFexODFeSe
through precise modifications in the synthesis procedure
[23–26]. This breakthrough opens an exciting and alter-
native avenue for further investigation into the material’s
properties and behavior.
In this article, we conducted an in-depth investigation

into spin excitations within insulating Li1−xFexODFeSe
single crystals, employing neutron scattering techniques
[27] (see also Refs. [28–30] therein). Insulating
Li1−xFexODFeSe crystallizes in the P4=nmm space group,
where FeSe and Li1−xFexOD layers alternate along the c
direction, as depicted in Fig. 1(a). The structural parameters
were determined via Rietveld refinement of x-ray diffrac-
tion measurements conducted on ground single crystals
[Fig. 1(b)], yielding lattice constants of a ¼ b ¼ 3.817 and
c ¼ 9.157 Å. It is noteworthy that in comparison to
optimally doped Li1−xFexODFeSe [19,33], we observed
lattice expansion within the ab plane and simultaneous
contraction along the c axis in insulating Li1−xFexODFeSe.
This evolution in lattice parameters is proposed to stem
from the reducing iron concentrations, effectively trans-
lating into a reduction in electron doping levels, as
previously discussed in Refs. [23–26].
The resistivity of our single crystals exhibits insulating

behavior over a wide temperature range, extending from
300 down to 2 K, as illustrated in Fig. 1(c). We estimated
the band gap to be approximately 20 meV by fitting the
resistivity data above 100 K to the activation energy
equation ρ ¼ A exp ðEg=kBTÞ. Furthermore, the temper-
ature-dependent behavior of the direct current (dc) mag-
netic susceptibility follows a Curie-Weiss-like behavior, as
depicted in Fig. 1(d), and no discernible indications of
long-range magnetic order were observed. These results are
in general alignment with prior reports [25,26].
In Fig. 2, we present the momentum dependence of spin

excitations in insulating Li1−xFexODFeSe within the (H,K)
plane at various energies (1-Fe unit cell). To enhance the
clarity of the data, we subtracted the background signals
dependent on jQj, primarily arising fromphonon excitations
in the aluminum holder, for energy values below aluminum
phonon-cutoff energy of 50 meV. Above 50 meV, we have
adopted a constant background at each energy, following the
approach outlined inRefs. [19,31,32]. At lower energies, the
spin excitations center around the stripe wave vector ðπ; 0Þ
and equivalent positions, forming an ellipse with long axis
parallel to the transverse direction of reduced q [Fig. 2(a)].
The elliptical pattern gradually elongates along its long axis
with increasing energy [Figs. 2(b)–2(d)]. This behavior is in
contrast to heavily electron doped Li1−xFexODFeSe, where
the low energy spin excitations exhibit a ring shaped
incommensurate resonance mode surrounding ðπ; πÞ [19].

Above 65 meV, two distinct peaks become resolvable, and
these split peaks continue to shift outward with increasing
energy [Figs. 2(e)–2(h)].
To elucidate the detailed dispersion of the excitations in

insulating Li1−xFexODFeSe, we present the excitation
spectra in the E-Q space. As depicted in Fig. 3(a), the
spin excitations emanate from the stripe wave vector,
progressively splitting into two branches as energy
increases, eventually approaching the zone boundary at
approximately 150 meV. For a quantitative analysis of the
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FIG. 1. Characterizations of insulating Li1−xFexODFeSe com-
pound and comparison of schematic diagrams of spin excitation
spectra in insulating and superconducting Li1−xFexODFeSe.
(a) The schematics of crystal structure of Li1−xFexODFeSe [6].
(b) The x-ray powder diffraction pattern and Rietveld refinement
conducted on the insulating phase of Li1−xFexODFeSe, using
ground single crystals. (c) In-plane resistivity measurement on the
insulating phase of Li1−xFexODFeSe single crystal. Four-probe
method is employed. The inset shows a linear fitting of ln ρ-1=T
plot above 100K. (d) Direct current (dc) magnetic susceptibility of
the insulating Li1−xFexODFeSe single crystal. External field
μ0H ¼ 1 T is applied along ab plane. (e) Schematic image of
V-shaped spin excitation spectrum in insulating Li1−xFexODFeSe.
(f) Schematic of the hourglass spin excitation spectrum in super-
conducting Li1−xFexODFeSe [19]. In (e) and (f), only excitations
along the (0.5, K) direction are shown for clarity.
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E-Q relation, we conduct fitting procedures on the constant
energy cuts using a Gaussian profile, as demonstrated in
Fig. 3(b). We observe a single peak at around 20 meV,
which progressively broadens as energy increases. With
further energy increase, this peak bifurcates into two
distinct peaks, resulting in a V-shaped dispersion pattern
that is consistent with the contour plot depicted in Fig. 3(a).
The V-shaped spin excitations emanating from the ðπ; 0Þ

point in insulating Li1−xFexODFeSe closely resemble the
spin waves observed in the antiferromagnetically ordered
parent compounds of iron pnictide superconductors [2,20].
These excitations primarily stem from the localized mag-
netic moments within the system, although the influence of
itinerant electrons cannot be completely discounted, given
the relatively modest energy gap observed in insulating
Li1−xFexODFeSe. Our estimation reveals that the spin wave
velocity in insulating Li1−xFexODFeSe is approximately
50% lower than that in 122 iron pnictides [20,34]. It is
interesting to note that the Se height above the Fe plane is
approximately 1.45 Å in Li1−xFexODFeSe, which is greater

than the pnictogen height in iron pnictides [32,35,36]. This
observation aligns with the general trend that a larger
pnictogen height tends to enhance electronic correlations
and reduce the spin wave velocity [32,35–38].
To gain a more profound understanding of the magnet-

ism in insulating Li1−xFexODFeSe, we present local
susceptibility as a function of energy, which provides an
estimate of the fluctuating moment of Fe ions (Fig. 4). The
local susceptibility was obtained by averaging the spin
spectral weight over the Brillouin zone, followed by the
Bose factor correction. The resulting χ00ðωÞ profile reveals a
broad hump centered around 100 meV, with an upper limit
extending to approximately 150 meV. This value is smaller
than the bandwidth of iron pnictides [2,39–41], consistent
with the softened spin wave velocity observed in
Li1−xFexODFeSe compared to iron pnictides.
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FIG. 2. (H, K)-plane momentum dependence of the spin
excitations in Li1−xFexODFeSe insulator at 5 K with the energy
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described in the main text. The measurements were conducted on
ARCS, and the data analysis utilized the Mslice program. To
improve plot quality, the data along the −H direction were
folded. The incident neutron energies used were 191.6 [(a)–(e)]
and 310 meV [(f)–(h)]. A vanadium run was performed for the
normalization process. The intensities are therefore presented in
mbar sr−1 meV−1 f:u:−1.
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FIG. 3. Dispersion of the spin excitations in insulating
Li1−xFexODFeSe. (a) The background-subtracted spin excita-
tions projected along the (0.5, K) direction in insulating
Li1−xFexODFeSe at 5 K. The data were collected on ARCS,
with energy ranges of 20 ≤ E ≤ 65 meV and 70 ≤ E ≤ 150 meV
collected under the incident energies of 191.6 and 310 meV,
respectively. The peak positions and full widths at half maximum
(FWHM) of the spin excitation signals obtained from Gaussian
fitting of constant energy cuts in (b) are represented by open
circles and horizontal bars. The ranges of integrated energies are
indicated by vertical bars. The isotropic Fe2þ form factor has
been corrected. (b) Constant-energy cuts of the stripe-type spin
fluctuations along the (0.5, K) direction at 5 K, with background
signals eliminated and Fe2þ form factor corrected. The energy=L
integration intervals were indicated. The fitting results of data
using a Gaussian profile are illustrated by solid lines. The error
bars correspond to 1 standard deviation. (c) The dispersion along
the (0.5, K) direction is overlaid for parent (black dots) and
optimal-doped (red open diamonds) Li1−xFexODFeSe. The gray
and orange lines serve as guides to the eye. The data of the
optimal-doped sample are taken from Ref. [19].
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By summing χ00ðωÞ across the energy range, we deter-
mined the fluctuating moment to be ð2.92� 0.38Þ μ2B=Fe,
corresponding to an effective spin (S) value of 1=2. The
fluctuating moment in the insulating Li1−xFexODFeSe
system appears to be smaller in magnitude when compared
to that of FeSe and 122 iron pnictides [31,39,42]. This
observation is somewhat surprising, particularly consider-
ing the insulating ground state in Li1−xFexODFeSe. One
plausible explanation for this difference could be linked to
the relatively large interlayer spacing induced by interca-
lation, which enhances fluctuations and subsequently leads
to a reduction in the intensity of spin excitations. This
phenomenon draws parallels with the behavior seen in
quasi-two-dimensional cuprate superconductors, character-
ized by the presence of “missing” spin-excitation spectral
weight [43,44].
It is informative to compare the spin excitations of the

insulating and heavily electron-doped superconducting
Li1−xFexODFeSe [Fig. 3(c)]. It is evident that the
dispersion behavior of spin excitations in these two com-
pounds above 65 meV are quite similar. A divergence
becomes apparent at lower energy ranges, giving rise to
distinct V-shaped and hourglass spectra in the insulating
and superconducting states, respectively.
More specifically, electron doping predominantly

influences low-energy spin excitations, causing a shift
from the ðπ; 0Þ point to an incommensurate position toward
the ðπ; πÞ direction below 65 meV. These observations
suggest a strong link between low-energy spin excitations
and itinerant electrons, with a marked dependence on the

level of doping. Conversely, high-energy spin excitations
seem relatively unaffected by doping, suggesting a relation-
ship with local moments akin to those in the insulating
parent compound.
Most notably, the transition from a V-shaped dispersion

to an hourglass-like pattern as doping progresses from the
insulating to the superconducting state bears a striking
resemblance to the behavior observed in hole-doped
cuprates [Figs. 1(e) and 1(f)] [45–47]. In cuprates, the
extensively studied hourglass dispersion has led to various
proposed models for its origin, including the Fermi surface
nesting hypothesis [45,48–52] and the induction of
dynamic spin stripes due to hole doping [46,53,54].
The similarity between Li1−xFexODFeSe and cuprates

implies a shared underlying mechanism. If this hypothesis
holds true, it implies that the simultaneous presence of two
distinct types of spin excitations is a recurring characteristic
among high-temperature superconductors. In heavily elec-
tron-doped Li1−xFexODFeSe and hole-doped cuprates, the
Fermi surface nesting possesses different wave vectors
from local moment antiferromagnetic interactions. The
intersection of two types of excitations at a specific energy
gives rise to the distinctive twisted hourglass dispersion.
Conversely, carrier doping induces broadening of spin
wave excitations when Fermi surface nesting aligns with
a similar wave vector as the parent compound’s antiferro-
magnetic interactions. These situations are illustrated in the
case of iron pnictides [2,39,40] and electron-doped cup-
rates [55–57].
The elucidation of the nature of spin excitations and their

doping dependence has the potential to shed light on the
fundamental mechanisms underlying superconductivity. In
the case of cuprates, the d-wave pairing symmetry has
gained substantial support and is thought to be intricately
linked with the characteristic hourglass-shaped spin exci-
tations [44,58]. When considering Li1−xFexODFeSe, the
s�-pairing mechanism, typically observed in iron pnictides
and reliant on the presence of both electron and hole
pockets, cannot be readily applied due to the absence of
hole pockets in this system.
Therefore, it is imperative to embark on further inves-

tigations to determine whether the hourglass-shaped spin
excitations also align with a d-wave pairing scenario in
Li1−xFexODFeSe, potentially associated with the electron
pockets at zone corners [59–62]. Additionally, delving into
the behavior of spin excitations in the intermediate doping
regime holds particular interest, as it could offer crucial
insights into how the hourglass dispersion and super-
conductivity evolve with doping. Furthermore, it is inter-
esting to explore the possibility of other competing orders
[22,63,64] or pseudogap phenomena [65–67] in these
intermediate doping regimes. Such phenomena are com-
monly observed in cuprates and could shed valuable light
on the complex interplay of electronic states and correla-
tions in these materials.
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FIG. 4. Momentum-integrated local susceptibility χ00ðωÞ of the
spin excitations in insulating Li1−xFexODFeSe. The solid line is a
guide to the eye. The horizontal bars indicate the integrating range
of energies, and vertical bars represent error bars corresponding to
one standard deviation. The datawith 20 ≤ E ≤ 65 meV and 70 ≤
E ≤ 150 meV were collected on ARCS, using the incident
energies of 191.6 and 310 meV, respectively. The red dashed line
shows χ00ðωÞ in superconducting Li1−xFexODFeSe and the blue
dash represents for the spin resonance mode, adopted from
Ref. [19]. These results suggest that superconductivity under
electron doping does not significantly change the total fluctuation
moment, similar to observations in iron pnictides [39,40].
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In summary, we present detailed neutron scattering
measurements that explore spin correlations in insulating
Li1−xFexODFeSe. We observed a smaller total fluctuating
moment in this material compared to other iron based
superconductors. This difference could be due to extended
interlayer distances resulting from intercalation, which
boosts fluctuations while reducing spin excitation intensity.
We also discovered a V-shaped spin wavelike excitation
pattern in insulating Li1−xFexODFeSe, where the spin wave
velocity is 50% lower than in 122 iron pnictides, likely a
result of stronger correlations reducing magnetic excitation
bandwidth. As doping transforms the insulating state into
the superconducting state, it transitions from a V-shaped to
an hourglasslike dispersion, a behavior reminiscent of what
is observed in hole-doped cuprates. This intriguing parallel
suggests the possibility of a shared underlying mechanism
governing magnetism and superconductivity across these
distinct systems. Our findings not only enrich the under-
standing of spin dynamics in iron-based materials but also
pave the way for future investigations into the universal
aspects of high-temperature superconductors and related
materials.
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